全球首颗!复旦大学创新存储芯片登上Nature顶刊
▲二维-硅基混合架构闪存芯片透射电子显微镜照片(图源:复旦大学)
如何将二维材料与CMOS集成又不破坏其性能,是需要攻克的核心难题。
CMOS电路表面有很多元件,而二维半导体材料厚度仅有1-3个原子,如果直接将二维材料铺在CMOS电路上,材料很容易破裂。
“就好比我们从太空看上海,似乎很平坦,但这个城市内部其实有400多米、100多米或者几十米高度不等的建筑。如果铺一张薄膜在城市上方,膜本身就会不平整。”周鹏形象比喻道。
因此,全世界的二维半导体研究者目前只能在极为平整的原生衬底上加工材料。一种解决思路是将CMOS的衬底“磨平”以适应二维材料,但要实现原子级平整并不现实。
周鹏-刘春森团队决定从本身就具有一定柔性的二维材料入手,通过模块化的集成方案,先将二维存储电路与成熟CMOS电路分离制造,再与CMOS控制电路通过高密度单片互连技术(微米尺度通孔)实现完整芯片集成。
这项核心工艺的创新,实现了在原子尺度上让二维材料和CMOS衬底的紧密贴合,最终实现超过94%的芯片良率。

此外,所制备的二维闪存单元支持20纳秒快速操作,且单比特能耗低至0.644皮焦耳。
团队进一步提出了跨平台系统设计方法论,包含二维-CMOS电路协同设计、二维-CMOS跨平台接口设计等,并将这一系统集成框架命名为“长缨(CY-01)架构”。
其跨平台系统设计支持二维NOR闪存芯片的指令驱动型工作模式,具备32位并行处理能力和随机访问功能。
这些特性已通过芯片测试得到验证:测试时钟频率设定为5MHz,编程脉冲则被优化为2.5个时钟周期。
该方法为新兴机制驱动的二维电子器件与成熟CMOS平台之间的兼容性提供了可靠保障。
团队相信,这些系统级成果标志着将二维电子技术的优势拓展至实际应用领域的重要里程碑。
下一步,周鹏-刘春森团队计划建立实验基地,与相关机构合作,建立自主主导的工程化项目,并计划用3-5年时间将项目集成到兆量级水平,期间产生的知识产权和IP可授权给合作企业。
展望未来,该团队期待该技术颠覆传统存储器体系,让通用型存储器取代多级分层存储架构,为人工智能、大数据等前沿领域提供更高速、更低能耗的数据支撑,让二维闪存成为AI时代的标准存储方案。
[加西网正招聘多名全职sales 待遇优]
好新闻没人评论怎么行,我来说几句
如何将二维材料与CMOS集成又不破坏其性能,是需要攻克的核心难题。
CMOS电路表面有很多元件,而二维半导体材料厚度仅有1-3个原子,如果直接将二维材料铺在CMOS电路上,材料很容易破裂。
“就好比我们从太空看上海,似乎很平坦,但这个城市内部其实有400多米、100多米或者几十米高度不等的建筑。如果铺一张薄膜在城市上方,膜本身就会不平整。”周鹏形象比喻道。
因此,全世界的二维半导体研究者目前只能在极为平整的原生衬底上加工材料。一种解决思路是将CMOS的衬底“磨平”以适应二维材料,但要实现原子级平整并不现实。
周鹏-刘春森团队决定从本身就具有一定柔性的二维材料入手,通过模块化的集成方案,先将二维存储电路与成熟CMOS电路分离制造,再与CMOS控制电路通过高密度单片互连技术(微米尺度通孔)实现完整芯片集成。
这项核心工艺的创新,实现了在原子尺度上让二维材料和CMOS衬底的紧密贴合,最终实现超过94%的芯片良率。
此外,所制备的二维闪存单元支持20纳秒快速操作,且单比特能耗低至0.644皮焦耳。
团队进一步提出了跨平台系统设计方法论,包含二维-CMOS电路协同设计、二维-CMOS跨平台接口设计等,并将这一系统集成框架命名为“长缨(CY-01)架构”。
其跨平台系统设计支持二维NOR闪存芯片的指令驱动型工作模式,具备32位并行处理能力和随机访问功能。
这些特性已通过芯片测试得到验证:测试时钟频率设定为5MHz,编程脉冲则被优化为2.5个时钟周期。
该方法为新兴机制驱动的二维电子器件与成熟CMOS平台之间的兼容性提供了可靠保障。
团队相信,这些系统级成果标志着将二维电子技术的优势拓展至实际应用领域的重要里程碑。
下一步,周鹏-刘春森团队计划建立实验基地,与相关机构合作,建立自主主导的工程化项目,并计划用3-5年时间将项目集成到兆量级水平,期间产生的知识产权和IP可授权给合作企业。
展望未来,该团队期待该技术颠覆传统存储器体系,让通用型存储器取代多级分层存储架构,为人工智能、大数据等前沿领域提供更高速、更低能耗的数据支撑,让二维闪存成为AI时代的标准存储方案。
[加西网正招聘多名全职sales 待遇优]
| 分享: |
| 注: | 在此页阅读全文 |
推荐:
全球首颗!复旦大学创新存储芯片登上Nature顶刊